
40 Issue 190 May 2006 CIRCUIT CELLAR® www.circuitcellar.com

grammer. When my firmware gets
into the hardware, I need a lot of trials
to get it right!

For several years now, my col-
leagues and I have distributed the
source code for a open-source
Windows/Linux parallel-port com-
mand-line programming tool (PPPT). It
uses a dumb five-wire cable connected
to a PC parallel port with no active
circuitry. There are many programs
like this available on the ’Net.

Like all AVR parallel port program-
mers, the PPPT needs direct access to
the PC’s parallel port hardware I/O
registers in order to wiggle the SPI
port signal lines. This wasn’t a prob-
lem with Microsoft Windows 95/98.
But under Linux and Windows
NT/2000/XP, direct I/O port access
requires special user privileges and a
custom driver. When using Windows
XP, a special driver that grants the
privilege to do direct I/O must be
installed, making any program that
accesses the driver a potential security
risk. When using Linux, the typical
parallel port programmer needs root

Atmel makes a series of wonderful
inexpensive general-purpose eight-pin
microcontrollers that go by the name
of ATtiny. One part in particular, the
ATtiny15L microcontroller, has
become one of my favorites because of
its rich set of features and the design
flexibility it offers. (No, I don’t work
for Atmel!) Atmel offers a wide vari-
ety of inexpensive flash-memory-based
microcontrollers that all share the
same AVR instruction set, which
Atmel describes as RISC-based and
optimized for high-level languages
such as C.

The micro-architecture of Atmel’s
AVR microcontrollers is in fact clock-
efficient in comparison to other
microcontrollers such as Microchip’s
PIC line and the typical 8051 vari-
eties. Evidence of this fact is that an
AVR microcontroller running with a
1-MHz processor clock delivers close
to 1 MIPS. This is because most
instructions take just one clock to
execute, and no instructions take
more than three clocks.

I have been working with AVR
microcontrollers for several years now.
My favorite is microcontroller is the
popular AT90S8515. (This part was
renamed the ATmega8515 when
moved to a new silicon process, which
doubled its maximum clock rate to 16
MHz.) One of the things that drew me
to the AVR product line in the first
place was its flash program memory. I
was also interested in the fact that the
parts can be programmed in-circuit
with the SPI port, using only four sig-
nal wires. One-time programmable
(OTP) parts aren’t for me. I guess I
have always been a trial-and-error pro-

privilege to give program direct access
to the parallel port’s I/O address space.

To make matters even worse, paral-
lel ports have virtually disappeared
from new laptops. The same applies to
serial ports. Luckily, inexpensive USB-
to-serial port dongles are available to
add back the missing laptop serial
ports that engineers in our line of
work have come to depend on.

Given the above-mentioned prob-
lems, I decided to design an inexpen-
sive, general-purpose, in-circuit pro-
grammer for AVR parts that doesn’t
require an unused PC parallel port and
special operating system privileges.
The ATtiny15L, coupled with a PC
serial port, offered a perfect solution.
The surface-mount version is so small
and low in power that it can be placed
in the hood of the DE9 female serial
port connector and powered from a
PC’s RS-232 modem-control signals
(e.g., RTS/CTS).

Photo 1 shows the tiny programmer
plugged into a laptop PC’s serial port.
As you’ll see, this device is something
that’s useful for other tasks as well.
It’s just a small matter of C program-
ming!

ATtiny15L SOLUTION
The eight-pin ATtiny15L microcon-

troller is available in a conventional
DIP package or a surface-mount SIOC
package for less than $2 in small
quantities. Because the part uses a fac-
tory-calibrated, stable, supply-voltage-
independent, internal tunable RC
oscillator for its 1.6-MHz processor
clock, up to six of the eight pins can
be used for I/O. If you want to pro-
gram the part in-circuit without any

FEATURE ARTICLE by Bruce Lightner

Tiny AVR Serial Port Programmer
Now you can program AVR microcontrollers with your PC’s serial port for less than $10.
Bruce’s general-purpose, ATtiny15L-based AVR programmer plugs into a laptop’s serial port
and draws its power from the port’s modem control lines.

Photo 1—My tiny AVR programmer plugs into a lap-
top’s serial port. This diminutive device steals all of its
operating power from the serial port’s modem control
lines.

www.circuitcellar.com CIRCUIT CELLAR® Issue 190 May 2006 41

special voltages, the usable number of
I/O pins drops to five, with the sixth
I/O pin reserved for active-low chip
reset.

Four of the I/O pins can be multi-
plexed into a built-in, 15,000 samples-
per-second, 10-bit ADC, which offers a
number of different programmable
voltage reference options. Two of the
ADC’s input pins can be paired and
used as a differential analog input
with programmable gain. Also, two of
the I/O pins on the part can be fed to
an analog comparator.

The ATtiny15L microcontroller has
two 8-bit timers, including one that
can be used a pulse-width modulator
(PWM) up to 150 kHz. The part has no
UART hardware, so one of the chal-
lenges I faced was providing bidirec-
tional serial port communication with
a PC serial port (using true RS-232 lev-
els) at high data rates (up to 115,200
bps).

The ATtiny15L operates from 2.7 to
5.5 V while using only a tiny amount
of current. When running at 1.6 MHz
with a 3-V supply, it consumes only 3
mA. In deep sleep mode, it draws less
than 1 µA. In fact, depending on the
RS-232 serial port in use, it’s possible
to run everything from current stolen
from the serial port’s modem flow-
control signal lines.

The ATtiny chip has two kinds of
nonvolatile storage, 1,024 bytes of
flash program memory and 64 bytes of
EEPROM. That works out to be only
512 AVR instruction words, so you
must be careful (and efficient) when

creating firmware. Although the
ATtiny15L has the standard comple-
ment of 32 general-purpose AVR regis-
ters, there isn’t any additional RAM
memory besides the register set.
There’s a three-level hardware call-
return stack, but there are no push or
pop instructions for data. On the sur-
face, this makes using the AVR ver-
sion of the GNU C compiler (AVR-
GCC) impossible. However, I’ve dis-
covered a number of C coding tricks
that enables the AVR-GCC to work
just fine with AVR parts without
RAM, like the ATtiny15L.

DESIGN GOALS
My goal was to build an inexpen-

sive, general-purpose device that
required only a standard PC serial port
to program any AVR device supporting
Atmel’s in-circuit programming algo-
rithm. I wanted it to fit in the serial
port’s DE9 hood, and I wanted to be
able to power it from the serial port
(i.e., no external power supply
required). Unlike other low-cost AVR
serial port programmers, I wanted
mine to provide true RS-232 signal
levels.

Of course, I needed a workable
design within the constraints of the
ATtiny15L’s limit of five I/O pins and
no RAM. Because I was using GNU’s
open-source AVR-GCC C-compiler, all
the firmware needed to fit within the
ATtiny15L’s limit of just 512 instruc-
tion words.

I wanted the programmer to achieve
AVR firmware download times compa-

rable to the existing parallel port pro-
grammers it would be replacing. I also
wanted it to be reprogrammable in-cir-
cuit and useful for other embedded
applications, besides programming
other AVR processors.

As you’ll see, I achieved all of these
goals and more. The system is useful
not only as an AVR programmer, but
you can also use it for many other
functions. For instance, you can use it
as a stand-alone, general-purpose,
AVR-based controller (using an exter-
nal power source) or a port-powered
intelligent analog/digital data-logging
device (if you attach it to a PC).

Because signals for all eight ATtiny
pins are brought out to an external
connector, there is almost no limit to
what can be done within the basic
capabilities of the ATtiny15L part. If
you need more than 512 AVR instruc-
tions and extra SRAM, you can substi-
tute in a more capable eight-pin
ATtiny part.

PROGRAMMING ALGORITHM
Table 1 is a summary of the AVR

serial programming instruction set
that’s common to many parts in the
AVR product line, including the
ATtiny15L. In the case of a part like
the ATtiny15L, this is known as the
low-voltage instruction set because all
of the in-circuit programming is done
using the same voltage levels as the
processor supply voltage in the range
of 2.7 to 5.5 V.

Some AVR parts offer an alternative
in-circuit serial programming option

Table 1—These bit patterns are shifted into the ATtiny15L microcontroller’s SPI port in order to reprogram the device in-circuit. Note that a is the address high bits. b is address
low bits. H is the low byte (0) and high byte (1). o is data out. i is data in. x is don’t care.

Instruction Instruction format Operation
Byte 1 Byte 2 Byte 3 Byte 4

Programming enable 1010 1100 0101 0011 xxxx xxxx xxxx xxxx Enable serial programming (while RESET is active)

Chip erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip erase flash memory and EEPROM arrays

Read program memory 0010 H000 xxxx xxxa bbbb bbbb oooo oooo Read H (high or low) data o from program memory at word address a:b

Write program memory 0100 H000 xxxx xxxa bbbb bbbb iiii iiii Write H (high or low) data i to program memory at word address a:b

Read EEPROM memory 1010 0000 xxxx xxxx xxbb bbbb oooo oooo Read data o from EEPROM at address b

Write EEPROM memory 1100 0000 xxxx xxxx xxbb bbbb iiii iiii Write data i to EEPROM at address b

Write lock bits 1010 1100 1111 1LL1 xxxx xxxx xxxx xxxx Write lock bits LL

Read lock bits 0101 1000 xxxx xxxx xxxx xxxx xxxx xLLx Read lock bits LL

Read signature bytes 0011 0000 xxxx xxxx 0000 00bb oooo oooo Read signature byte o at address b

Write fuse bits 1010 1100 101x xxxx xxxx xxxx FFFF 11FF Set fuse bits FFFFF

Read fuse bits 0101 0000 xxxx xxxx xxxx xxxx FFFF xxFF Read fuse bits FFFFF

Read calibration byte 0011 1000 xxxx xxxx 0000 0000 oooo oooo Read RC oscillator calibration byte o (for OSCCAL register)

42 Issue 190 May 2006 CIRCUIT CELLAR® www.circuitcellar.com

that applies 12 V to the chip’s
RESET pin during program-
ming. This mode of serial pro-
gramming is advantageous
because the RESET pin can be
reprogrammed and used as a
general-purpose I/O pin.
However, I didn’t use this pro-
gramming mode because I did-
n’t want to deal with the com-
plexities of generating and
switching a 12-V signal.

Note that many AVR parts now
offer Page mode read/write instruc-
tions for program memory. Although
this project supports this mode of
device programming, I won’t cover it
here.

The program and EEPROM arrays
are programmed using the AVR chip’s
SPI bus while the chip’s RESET pin is
held active low. The serial program-
ming interface consists of SCK (input),
MOSI (input), and MISO (output) pins.
Figure 1 shows sample AVR serial pro-
gramming waveforms. The
Programming Enable instruction must
be executed before program/erase
instructions can be executed.

A given programming instruction is
sent to the AVR by shifting 4 bytes, 1
bit at a time, into the part using SCK
and MOSI. Each bit shifted in results
in a bit being shifted out on the MISO
pin. Therefore, 4 bytes are shifted out
for each programming instruction
that’s executed. For most instructions,
these 4 bytes are ignored, except for
read instructions, in which case the
last byte shifted out is the read data.

Given the operation of the program-
ming instructions in Table 1, a serial
port programmer must be able to exe-
cute an arbitrary 4-byte AVR program-
ming instruction and then return the
last data byte read back from the chip.
The other basic operation needed is to
execute the programming enable
sequence, including cycling RESET
and SCK as required, in order to place
the ATtiny15L part in Programming
mode. With these two basic serial port
programmer operations, a PC program
can be constructed to use the ATtiny-
based serial programmer to download
firmware to any AVR microcontroller
using its SPI in-circuit programming
port.

ALTERNATIVE DESIGNS
My programmer certainly isn’t the

only inexpensive serial port program-
mer for the AVR microcontroller prod-
uct line. Information about construct-
ing a PC serial port programmer using
a 20-pin Atmel AT90S1200 microcon-
troller and a few transistors and mis-
cellaneous passive components is
described in Atmel’s application note
“AVR910: In-System Programming.”
As with my design, a PC program
sends special commands over the PC’s
serial port to an AVR microcontroller.
The microcontroller drives the SPI
programming signals in order to repro-
gram a second AVR microcontroller.

In fact, Atmel’s design involves cir-
cuitry similar to mine to generate
bipolar voltage levels without the use
of dedicated bipolar DC-to-DC con-
verters. However, the positive RS-232
voltage level generated by the Atmel
design can’t be any greater than the
AVR microcontroller’s supply voltage.
The positive RS-232 serial port levels
technically should be higher than 9 V.
This typically isn’t a problem for mod-
ern PC serial ports, providing the AVR
processor is powered from a 5-V
source. However, if a 3.3-V supply (or
even a 2.7-V supply) is needed to pro-
gram a target AVR processor running
at this lower supply voltage level, the
Atmel design may not work at all,
even with modern PC serial ports.

Because my design uses the serial
port’s modem control lines (DTR and
RTS) to derive the positive RS-232
voltage level, the RS-232 level sent to
the PC is independent of the AVR
processor supply voltage, which can
be derived from the same modem con-
trol lines. In other words, the design
can be port powered, requiring no

external power supply.
Another problem with the

Atmel programmer’s RS-232
level-shifting circuit is that it
uses two microcontroller I/O
pins for the RS-232 interface.
With an eight-pin AVR part like
the ATtiny15L, you don’t have
the luxury of using two pins for
the serial port interface because
you have a total of only five I/O
pins to work with. The SPI pro-

gramming port needs four pins:
RESET, SCK, MISO, and MOSI. My
solution uses only one bidirectional
I/O pin to communicate in Half-
Duplex mode over the serial port con-
nected to the host PC.

It would be more of a challenge to
fit Atmel’s AT90S1200-based reference
design inside the hood of a DE9 serial
port connector because of its larger
chip and required off-chip oscillator.
The bottom line is that my ATtiny-
based design is certainly smaller (and
likely a little less expensive) than
Atmel’s reference design. Both designs
cost less than $10 in parts. But, as
you’ll see, my design is flexible
enough to have a number of other
uses.

RS-232 LEVEL SHIFTING
A PC serial port uses RS-232 signal

levels to communicate with external
devices. RS-232 signal levels are
inverted in comparison to typical digi-
tal signal levels. The Transmit Idle
condition is signified by a continuous
logic one (1), a negative voltage level
between –4 and –12 V. The start of a
character is signified by a logic 0, a
positive voltage level between 4 and
12 V. (Note that levels in the range of
±25 V are technically possible, but few
modern PCs use these extreme voltage
levels.) A typical single-supply RS-232
level-translator chip such as the
MAX202 puts out voltages in the ±9 V
range.

After the start bit, the data bits are
sent (typically 8 data bits in total)
using this inverted logic. This is fol-
lowed by at least 1 stop bit, a logic 1,
or negative voltage level, which brings
us back to the transmit idle state. The
data bits are sent least-significant bit
first. Because the RS-232 data signal

Serial data input
(MOSI)

Serial data input
(MISO)

Serial clock input
(SCK)

MSB

MSB

LSB

LSB

Serial programming waveform

Figure 1—ISP programming instructions are shifted into the SPI port’s
MOSI pin on the rising edge of SCK. Output data (on the MISO pin) is
sampled on the falling edge of SCK.

www.circuitcellar.com CIRCUIT CELLAR® Issue 190 May 2006 43

inverts the logic-level signal and shifts
it to V+, the larger positive voltage
present on the DTR and RTS serial
port modem control lines. The invert-
ed signal is in turn applied to the gate
of the P channel MOSFET QP1B,
which again inverts the signal, either
driving a positive voltage level onto
DE9 pin 2 (RXD) or not. Pull-up resis-
tor R5 ensures that the P-MOSFET
QP1B is off whenever QP1A is off.

If the N-MOSFET QP1A isn’t driv-
ing V+ onto RXD, then RXD is pulled
to the same negative voltage present
on TXD as negative current flows
through R2 and the D1 diode array.
This ensures that the PC receives true
bipolar RS-232 signal levels on its seri-
al port input pin 2 (RXD). D1 and R2
also serve to block positive voltages
switched by the P-MOSFET QP1B
from coupling back into the PC’s seri-
al output line TXD.

Because of double-inversion by the
two transistors, serial data sent to the
ATtiny15L is immediately echoed
back to the PC without delay. This
means that the PC receives a copy of
every character that it sends to the
programmer.

When it is time to transmit serial

data from the ATtiny15L to the PC,
pin 2 (PB4) is reconfigured to be an
output pin by the software UART. At
this point, the AVR I/O pin driver
overrides the TXD signal path from
the PC serial port to the programmer.
The gate of QP1A is now under the
software UART’s control. Data follows
the same path back to the PC as
before, with transistors QP1A and
QP1B serving as RS-232 level transla-
tors.

The source of positive voltage (V+)
for the RS-232 driver QP1B is the PC
serial port’s RS-232 modem control
lines DTR and RTS. The diode array
D3 ensures that only positive voltages
pass into the V+ storage capacitor C2.
The low-dropout voltage regulator U1
converts this voltage into the supply
voltage (VCC) for the ATtiny15L micro-
controller. Indicator LED D5 serves
two purposes. It’s a power-on indica-
tor, and it guarantees a small current
drain that prevents over-voltage
buildup on the VCC storage capacitor
C1. Otherwise, the positive voltage
path from TXD through the current-
limiting resistor R2 and then through
the VCC voltage-limiting diode D2 onto
C1 would tend to build up excess volt-
age on C1.

Note that there’s a provision to
power the ATtiny15L microcontroller
via an external DC voltage source
using the miniature power connector
P2 and diode D4. This enables the pro-
grammer to be powered via an exter-
nal power source in situations where
the PC serial port modem’s control
signals don’t supply enough current to
run the ATtiny15L. Because the
design’s typical current requirements
are less than 5 mA, most PC serial
ports have plenty of current to spare,
and an external power supply isn’t
required. Photo 2 shows the front and
back of the assembled programmer.

TRANSISTORS GONE BAD
One of the purposes of this project

is to provide an RS-232 serial interface
that would run at the highest possible
data rate. In the case of the
ATtiny15L, which runs with a cali-
brated 1.6-MHz processor clock, the
most code-efficient way to achieve
precise UART timing is to use soft-

from the PC idles at the negative RS-
232 voltage, you can use this same sig-
nal, along with some diode magic, to
send negative voltage levels (logic 1)
back to the PC.

The modem control signal lines
from the PC—data terminal ready
(DTR) and request to send (RTS)—are
positive voltage levels (logic 0) when
active. This is where I get my positive
RS-232 voltage supply for sending
logic 0 data back to the PC and,
optionally, powering the regulator chip
for the ATtiny15L’s VCC supply.

Figure 2 shows how it all comes
together. I used a standard PC serial
port to provide a half-duplex RS-232
communication path using a single
ATtiny15L pin.

In Receive mode, the software
UART in the ATtiny15L sets up pin 2
(PB4) as a digital input. RS-232 data
sent over DE9 pin 3 (TXD) is read
directly by the microcontroller on pin
2. Resistor R2 and diode array D2
limit the RS-232 input signal level
sent to this logic-level pin to a safe
range of 0 to VCC.

At the same time, this same unipo-
lar logic-level signal drives the gate of
the N channel MOSFET QP1A. This

Figure 2—My tiny AVR programmer steals its power from the serial port. The RS-232 interface needs only one of
the ATtiny15L’s eight pins. By using all surface-mount parts, everything easily fits inside the DE9 connector hood.

44 Issue 190 May 2006 CIRCUIT CELLAR® www.circuitcellar.com

ware delay loops and not one of the 8-
bit timers. Although the ATtiny15L’s
factory-calibrated internal RC oscilla-
tor makes for a stable, predictable
source of timing for the software
UART, I found that the prototype
wouldn’t run reliably at higher data
rates (e.g., 57,600 and 115,200 bps).

The problem was diagnosed as being
the fault of the circuit’s transistors.
The transistors’ turn-off times were
much too slow, even though the bit
time at 115,200 bps is a whooping 8.7
µs. My original design used PNP and
NPN switching transistors to provide
the double-inversion and level shifting
from unipolar logic levels to bipolar
RS-232 levels. Apparently, the original
transistors were capable of switching
at higher than 100 MHz. As I discov-
ered, this isn’t true in a relatively low-
current application such as this one.

Because the transistors were being
driven into full saturation and were
switching extremely low currents (less
than 1 mA), their turn-off times were
measured in microseconds! I was run-
ning with turn-off delays that were
several of orders of magnitude slower
than I had first expected. This was the
result of the Miller effect. Note that
this delay isn’t symmetrical with
respect to the two edges of a serial
port data pulse. Only one edge (the
falling edge of RXD) is delayed by as
much as 5 µs. Therefore, at 115,200
bps, where bit times are only 9 µs, the
serial data was distorted enough to
completely garble the data received by
the PC.

The improved circuit shown in
Figure 2 uses P channel and N channel
logic-level MOSFETs to achieve the
same function as the earlier
PNP/NPN transistor design. In fact,
this design still exhibits significant
FET turn-off delays on the order of 1
to 2 µs for QP1A and QP1B combined,
depending on the values chosen for
pull-up resistor R5 and pull-down
resistor R2. This effect can be ignored
at data rates of 38,400 bps and lower.

At higher data rates, a couple of no-
operation instructions in the software
UART code can be used to help bal-
ance the delay. However, this fix does-
n’t remove edge-timing distortion
from the echoed characters sent by the

PC to the programmer. The only fix in
this case is to lower the value of R5. A
value under 470 Ω clears up this prob-
lem at 115,200 bps. The trade-off is
current consumption while the serial
port is active versus the maximum
serial port speed. Remember that you
want to power everything with power
stolen from the serial port’s modem
control lines. As a result, you need to
switch as little current as possible.

C WITHOUT RAM
After switching to C code from

assembly language for firmware devel-
opment, it’s hard to go back. You still
have to know the target processor’s
machine code to be an effective
firmware developer for resource-limit-
ed microcontrollers like the
ATtiny15L, but I find that being able
to program in C makes me more pro-
ductive and results in a much more
maintainable product. Plus, with care-
ful work and planning, there’s no net
loss of efficiency with respect to how
much functionality you can stuff into
the target microcontroller.

My C compiler of choice has always
been GNU’s open-source GCC compli-
er, which is supported in some form
on almost every operating system. It
targets virtually every instruction set
in the universe, and it has generated
good machine code every time I’ve
used it. There is an AVR version of
GCC with a full complement of sup-
port tools, including an assembler and
a linker. For years, I’ve used AVR-
GCC to develop firmware for Atmel
AVR chips, using both Windows and
Linux. The machine code it has gener-
ated has been especially good.
However, when it was time to start
working with the ATtiny15L, I was
disappointed to discover that AVR-

GCC didn’t support the low-end
Atmel microcontrollers like the
ATtiny15L that have no RAM. What
was I to do?

I have years of experience with the
AT90S8515 microcontroller, which
has only 512 bytes of RAM, so I knew
I could write C code for the chip,
which uses almost no RAM. In fact,
the hard part about using AVR-GCC
for AVR microcontrollers like the
AT90S18515 is writing C code in a
way that conserves the precious small
amount of RAM.

The AVR-GCC generates AVR code
that uses the 32 8-bit hardware regis-
ters for local variables. It passes
parameters to and from subroutines
and functions using the same regis-
ters. Therefore, it’s reasonably easy to
write complex C programs that use lit-
tle or no RAM. The reward for doing
this well is tightly coded machine
code that tends to run fast. Like many
firmware developers, I always generate
a mixed listing from the compiler that
shows the compiler’s machine code
interspersed with my C source code
lines. This way I know exactly what
the compiler is doing. By reviewing
this output on a regular basis, I can
learn what the compiler does well and
what it has problems with.

My experiences with the code gener-
ator from the AVR-GCC taught me
that, in fact, the compiler should work
with a microcontroller without RAM.
The key is making sure that AVR
instructions that reference RAM never
make it into the target microcon-
troller’s executable image. I solved
this problem by putting together a
simple Perl script that post-processes
the C compiler’s output and checks
for illegal instructions.

I use the GNU make program (sup-
plied with the AVR-GCC) to cause the
assembler to automatically generate a
mixed listing and then check it for bad
instructions using the Perl script. If
problems are detected, the Perl script
outputs an error message, which
includes the C source line that gener-
ated the problem instruction along
with the bad assembly language
instructions. The make file logic then
deletes the resultant object file and
aborts the entire process. Therefore,

Photo 2—When I say tiny, I mean tiny. Everything fits
inside a DE9 hood.

www.circuitcellar.com CIRCUIT CELLAR® Issue 190 May 2006 45

bad code never makes it to the
linker.

With these checks in place, it’s
now a simple matter of coding in
such a way as to completely
avoid any use of RAM. Also,
remember that the ATtiny15L
has only a three-deep call-return
stack.

Let’s consider some tricks for
programming AVRs without
RAM. These tricks tend to yield
fast and efficient machine code,
no matter which AVR processor
your C program targets.

Constant data that would oth-
erwise need to be placed in RAM
is stored in program memory
using some special compiler
attributes. It’s then retrieved
with the load program memory
(LPM) instruction when needed.

The main program is declared
naked to inhibit the generation of sub-
routine entry/exit code. The project is
structured to include no more than
two (or three) levels of subroutine
calls (depending on whether or not
interrupts are enabled). Without this
declaration, registers used for local
variables would be pushed and popped
from the (nonexistent) stack.

Any storage needed in the interrupt
handler is globally declared both in
the interrupt handler and in the main
program and subroutines:

register unsigned char foo

asm(“r2”);

Note that r2 specifies one of the AVR
hardware registers. In this case, the
register selected in this way must not
be one of the registers reserved by the
AVR-GCC for special uses, such as
parameter passing or temporary stor-
age.

Use a special in-line assembly
macro in situations where the AVR-
GCC uses a RAM location and an lds
instruction to load constant data into
one of the AVR lower registers
(r0–r15). For example:

foo = 1; // Will likely generate a

“lds”

foo = BYTE(1);// Uses “ldi/mov”

instead

The in-line assembly macro BYTE()
causes the compiler to first load the
constant into one of the high registers
(r16–r31) using an ldi instruction. It
then moves the data into the variable’s
assigned low register.

Keep all subroutines and functions
simple enough that they don’t require
any local variable storage other than
those registers reserved by the AVR-
GCC for parameter passing and tem-
porary storage. Basically, this includes
12 of the 16 upper 8-bit AVR registers
(r18–r27 and r30–r31). Plus, avoid non-
leaf C subroutines and functions that
include any state. A routine with no
local storage meets this requirement,
which is needed to avoid push and pop
instructions needed to save and
restore this state before and after call-
ing another routine.

Use static in-line routines and in-
line assembly macros liberally. Such
code is expanded in-line by the com-
piler. It completely eliminates subrou-
tine calls, which serves to avoid some
of the aforementioned restrictions. In
fact, it’s more efficient for routines
that are called from only one place.

Of course, your other option is to
use an ATtiny device that has RAM.
That would be way too easy for me!
Besides, not having RAM tends to
make the microcontroller cheaper, and

in the embedded world, and
cheaper is always better.

PC SOFTWARE
The simple console-mode

Windows C program serial port
programming tool (SPPT) con-
trols my ATtiny15L-based pro-
grammer. You can compile the
program with either Microsoft
Visual C++ or Borland’s C com-
piler (BCC). Unlike its earlier
parallel port cousin PPPT, this
program doesn’t need any special
operating system privileges to
run. The only hardware resource
it requires is one of the PC’s
standard RS-232 serial ports.

Like all AVR-GCC tools, the
program SPPT is a command-
line program that takes its direc-
tion from parameters supplied
with the program’s run string.

For example, the following command
will erase and then download the
foo.hex file (containing an AVR pro-
gram memory image) into a target
AVR processor:

sppt -ce -lp foo.hex –en

The program’s command-line options
are shown in Table 2.

The SPPT program does all of its
work using the ATtiny15L microcon-
troller as a kind of proxy. The PC pro-
gram tells the ATtiny15L what to do
by sending a few simple commands
over the PC serial port. As you know,
these command characters are echoed
back because of the way the half-
duplex serial interface works. The
ATtiny15L then executes the com-
mands. For many of the commands,
one or more response bytes are sent
back to the PC. When the command is
complete, the ATtiny15L sends back a
prompt character (*) and waits for a
new command.

The ATtiny15L’s serial port com-
mands are shown in Table 3. Note
that the minimal set of commands
needed to reprogram a target AVR
processor includes only the first four
commands in the list (i.e., e, r, R, and
>). In fact, the initial version of SPPT
used only these four commands.

The a, f, m, F, and M commands

SPPT Options Description
-d Set Debug mode

-r Reset only

-a Leave programmer SPI signals active on exit

-comx Look for program cable on serial port COMx

-b rate Set serial port data rate (default=38400)

-ce Chip erase

-en Enable chip (de-assert RESET)

-lp file Load program memory from file

-le file Load EEPROM from file

-sp file Save program memory to file

-se file Save EEPROM to file

-dp n1 n2 Display program memory in range n1–n2

-de n1 n2 Display EEPROM in range n1–n2

-dd Display device codes

-ap addr w Alter program memory at addr with 16-bit word w

-ae addr b Alter EEPROM at addr with 8-bit byte b

-wp Write protect program/EEPROM memory

-rp Read/write protect program memory/EEPROM

Table 2— Bruce: Please write a 2- or 3-sentence caption.

46 Issue 190 May 2006 CIRCUIT CELLAR® www.circuitcellar.com

were added to improve the
speed of the programming
operation. The program mem-
ory and EEPROM write bytes
commands F and M activate
AVR firmware to poll the
AVR memory arrays for
write-completion during
reprogramming and to per-
form a read-back verification
for each byte written. The
AVR program memory and
EEPROM arrays are self-
timed. In order to write at the
maximum speed, polling is
needed. By using these com-
mands with the PC serial port set for
38,400 bps, the program SPPT, just
like its PC parallel port relative, can
reprogram an AVR target processor
very close to the maximum theoreti-
cal speed.

TIME TO PROGRAM
My programmer’s eight-pin dual-

inline 2-mm header J3 has one pin for
every signal attached to the eight-pin
ATtiny15L microcontroller. Therefore,
the chip can be programmed in-circuit
using the standard AVR low-voltage
serial programming algorithm with
practically any AVR programmer,
including another ATtiny programmer.
You can provide power with an exter-
nal power supply and a custom-built
programming cable (see Photo 3). Or,
depending on the programmer, regulat-
ed power can be supplied by the pro-
grammer through J3. Alternatively,
unregulated voltage can be supplied
via P2, or the board can be self-pow-
ered via the serial port.

If power is supplied via the program-
ming cable, then the device can be

programmed using any voltage in the
range of 2.7 to 5.5 V. Otherwise, the
programmer needs to supply and
accept SPI port logic levels in a safe
range based on the VCC voltage provid-
ed by the ATtiny programmer’s on-
board voltage regulator, U2.

Firmware for my ATtiny program-
mer, including the complete source
code, is posted on the Circuit Cellar
FTP site. Also posted is the AVR-GCC
development environment V. 2.95,
including a make file and all the
WinAVR executables needed to rebuild
the ATtiny programmer’s firmware
ROM files from source code. Source
code and executables for the SPPT are
included as well.

All of the electronic components I
used for this project are available from
Digi-Key, my favorite online electron-
ic parts distributor. The tiny two-
sided, surface-mount PCB shown in
Photo 2 was built with ExpressPCB’s
free PCB layout software. The three-
day PCB fabrication service is nice.
The ExpressPCB layout file is also
posted on the FTP site so you can
make your own boards.

TRULY TINY
I set out to build yet another serial

port-based AVR programmer, and I did
just that. I met all of my design goals.
The programmer is truly tiny. It’s
arguably as small as can be for a
device that plugs into a DE9 serial
port, because it’s housed completely
within the nine-pin serial port connec-
tor hood. The inexpensive program-
mer features the ATtiny15L, which is
one of Atmel’s least expensive eight-

pin ATtiny microcontrollers,
and just a thimble full of
other surface-mount parts.

In most applications, my
programmer requires no
external power supply
because it’s thrifty enough to
steal current from a serial
port’s modem control out-
puts. For applications that
require external power, you
can power the programmer
with an external wall wart
using a dedicated DC power
plug. Or, regulated VCC in the
range of 2.7 to 5.5 V can be

supplied over the device’s eight-pin 2-
mm header connector.

My flexible programmer isn’t limit-
ed to programming AVR microcon-
trollers. That’s just one of its many
potential applications. You can easily
reprogram the programmer’s ATtiny
microcontroller in-circuit to function
as a stand-alone general-purpose AVR-
based controller. You can also use it as
a serial-port-powered intelligent A/D
data-logging device attached to a PC.

Because all eight of the ATtiny15L’s
pins are accessible from an external
eight-pin connector, application pro-
grams (written in C or assembly) have
access to all of the microcontroller’s
on-chip peripherals, including two 8-
bit timer/counters with separate
prescalars, one of which offers a 150-
kHz, 8-bit, high-speed PWM output.
Among other things, the PWM output
can function as a digital-to-analog out-
put.

Depending on the configuration
(stand-alone or attached to a serial
port), the device offers three or four
channels of analog-to-digital conver-
sion with 10 bits of resolution at up to
15,000 samples per second with pro-
grammable reference voltages. In
Stand-Alone mode, the device even
offers one differential ADC input with
optional 20× gain. There are also two
available analog comparator inputs. By
changing the on-board DC regulator
chip, you can set up the device to use
a VCC voltage between 2.7 and 5.5 V.

I use my programmer to digitize the
audio from a Radio Shack scanner and
send the data into my PC via the seri-
al port. Besides some C code inside

Photo 3—External power is optional but useful for pro-
gramming the programmer or using it without the serial
port.

Command Description
e Enable programming mode on target

r Reset target chip

R Release target chip from programming mode

> a b c d Send bytes a, b, c, and d to programmer (returns 1 byte)

a L H Set current memory address to H:L

f n Read n bytes from flash memory starting at current address

m n Read n bytes from EEPROM starting at current address

F n a b ... Write n bytes to flash memory starting at current address (n < 9)

M n a b ... Write n bytes to EEPROM starting at current address (n < 9)

v Show firmware version

n No operation

Table 3— Bruce: Please write a 2- or 3-sentence caption.

www.circuitcellar.com CIRCUIT CELLAR® Issue 190 May 2006 47

the ATtiny15L, all this involves is a
capacitor.

This project proves that you can
develop a nontrivial application for a
512-instruction microcontroller with-
out RAM completely in C language.
With the supplied design files, source
code, and GNU GCC development
environment, you should be able to
duplicate this feat. Now it’s up to you
to make it just a little bit better! I

Bruce Lightner (lightner@lightner.net)
works for Lightner Engineering in La
Jolla, California. He discovered com-
puters several decades ago and has
been building hardware and software
ever since. Bruce holds more than a
dozen patents in the fields of comput-
er architecture and telematics. His
most recent venture is Networkcar,
which produces wireless diagnostics
and tracking devices for vehicles of all
sizes.

PROJECT FILES
To download the code and additional
files, go to ftp://ftp.circuitcellar.com
/pub/Circuit_Cellar/2006/190.

RESOURCES
Atmel Corp., “ATtiny15L: 8-bit
Microcontroller with 1K Byte Flash,”
rev. 1187E, 2002.

———, “AVR910: In-System
Programming”, rev. 0943C, 2000,
http://www.atmel.com/dyn/prod-
ucts/app_notes.asp?family_id=607.

B. Dean, AVR Downloader/Uploader
(AVRDUDE), www.nongnu.org/avr-
dude/.

PicoWeb Parallel Port Programming
Tool (PPPT), Lightner Engineering,
www.picoweb.net/downloads.html.

S. Ball, “A Design Logic 2001 Primer”,
Circuit Cellar 127, 2001, www.circuit-
cellar.com/pastissues/articles/ball127/
text.htm.

SOURCES
ATtiny15L Microcontroller
Atmel Corp.
www.atmel.com

PCB layout software
ExpressPCB
www.expresspcb.com

WinAVR Development tools
http://sourceforge.net/projects/winavr/

